B. Math Analysis 1 Mid Semester 15-09-2005 . Answer all the questions (8 x 5=40).

If you are using a theorem/result proved in the class state it correctly. All answers need justification.

- 1) Show that between any two real numbers there are infinitely many rational numbers. State all the properties of real numbers that you will be using in establishing this.
 - 2) Show that the set $A = \{a + ib : a, b \in [0, 1]\}$ is not a countable set.
- 3) Compute $\limsup_{n \ge 1}$ and $\liminf_{n \ge 1}$ of the sequence $\{(x_n)^{\frac{1}{n}}\}_{n \ge 1}$, where x_n is defined by $x_n = \frac{1}{2^{\frac{n+1}{2}}}$ when n is odd and $x_n = \frac{1}{3^{\frac{n}{2}}}$ when n is even.
- 4) Let $\{x_n\}_{n\geq 1}$ be a bounded sequence, suppose every convergent subsequence of $\{x_n\}_{n\geq 1}$ converges to a real number l. Show that $\lim x_n=l$.
 - 5) Compute the following limits. Crive complete arguments.
 - a) $\lim_{n\to\infty} (p)^{\frac{1}{n}}$
 - b) $\lim_{n\to\infty} \frac{1}{n} (1 + \frac{1}{2} + \dots + \frac{1}{2^{n-1}})$
 - 6) State and prove Leibnitz' alternating series test for convergence of a series.
- 7) Let $\sum a_n$ be a convergent series of positive terms. Show that $\sum a_n^2$ is a convergent series. What can you say about the series $\sum a_n^{\frac{1}{2}}$?
 - 8) Test the following series for absolute convergence or divergence
- a) $x_n = (\frac{\sin n}{n})^n$ (here we assume that the sine function is defined as in your +2 course).
- b) The series $\sum x_n$ is defined by $x_n = \frac{1}{2^{\frac{n+1}{2}}}$ when n is odd and $x_n = \frac{1}{3^{\frac{n}{2}}}$ when n is even.